Prevalence study of Simkania negevensis in cooling towers in Spain
Leonardo Martín Pérez, Francesc Codony, Karina Ríos, Bábara Adrados, Mariana Fittipaldi, Gregori De Dios, Gustavo Peñuela and Jordi Morató

ABSTRACT

Simkania negevensis is an obligate intracellular bacterium grouped into the order Chlamydiales. This new amoeba-resistant intracellular bacterium might represent a novel etiologic agent of bronchiolitis and community-acquired pneumonia and occurs in aquatic habitats such as drinking water and reclaimed wastewater. Another amoeba-related bacterium, Legionella pneumophila, is an etiologic agent of pneumonia transmitted by environmental aerosols or contaminated water/air cooling systems. These transmission pathways are important in the natural history of Legionellae infections and possibly other intracellular microorganisms such as Parachlamydiaceae; thus, understanding the feasibility of Simkania infection by these routes is relevant. In the present work, we investigated the prevalence of this newly identified pathogenic bacterium in cooling towers by quantitative PCR (qPCR) and its possible relationship with Legionella pneumophila co-infection. Our results show Simkania detection in 2 of 70 cooling towers analyzed. To our knowledge, this report is the first describing Simkania negevensis detection in this category of environmental water samples.

Key words | cooling towers, environmental water samples, real time PCR, Simkania negevensis

INTRODUCTION

Simkania negevensis is an obligate, intracellular, gram-negative bacterium that shares several characteristics with the Chlamydiae, especially those related to its growth cycle (Kahane et al. 1993, 1995, 2002). To this point, only one strain has been recognized, ZT (ATCC VR 1471T), initially called “Z”. Taxonomic studies have grouped this strain into a new bacterial family, Simkaniaceae, in the order Chlamydiales, based on its intracellular bimorphic parasitic growth in cultured cells and on rDNA sequence comparisons (Everett et al. 1999a, b; Kahane et al. 1999). Its full-length 16S and 23S rDNA sequences are 80% and 87%, respectively, identical to those from members of the Chlamydiae family (Everett et al. 1999a, b).

S. negevensis has also been considered as the etiologic agent for several respiratory tract infections in humans, including bronchiolitis in infants (Kahane et al. 1998) and community-acquired pneumonia and acute exacerbation of chronic obstructive pulmonary disease in both adults and children (Lieberman et al. 1997, 2002; Petrich et al. 2002; Greenberg et al. 2005; Fasoli et al. 2008). It is important to note that the determination of the prevalence of Parachlamydia and Chlamydia-like organisms has recently been the
subject of several studies, in part as a consequence of its association with lung infection (Casson et al. 2008; Corsaro et al. 2009; Greub 2009).

Serological evidence of past exposure to S. negevensis has been well documented, indicating that natural infection with this pathogenic microorganism seems to be highly prevalent worldwide (Friedman et al. 1999, 2003; Kumar et al. 2005; Yamaguchi et al. 2005; Baud et al. 2009). Recently, it has been suggested that S. negevensis could be a ubiquitous microorganism present in most aquatic habitats such as drinking water and reclaimed wastewater because of its relative resistance to chlorination (Kahane et al. 2004, 2007) and its ability to replicate and survive over long periods of time in amoebic cysts (Kahane et al. 2001). Moreover, Friedman et al. (2006) reported that Simkania typically found in domestic water supplies was the same organism isolated from patients with lower respiratory tract infection and suggested that water itself may possibly have been the source of these Simkania infections.

Similar transmission of Legionellae has been previously described (Fallon & Rowbotham 1990). In fact, amoebae are thought to play an important role in the natural history of infections with Legionellae and may play a similar role in other intracellular microorganisms such as the Parachlamydiaeaceae (Harb et al. 2000; Swanson & Hammer 2000; Greub & Raoult 2002). However, in the case of Legionnaire's disease, transmission by environmental aerosols or contaminated water/air conditioning systems, such as cooling towers, is also possible (Stout & Yu 1997; Pagnier et al. 2009).

To date, no studies are available from Spain or elsewhere in Europe specifically addressing the epidemiology of Simkania negevensis. For this reason, the aim of the present work was to investigate the potential existence of this bacterium in cooling water towers to determine if these sources may be environmental reservoirs.

MATERIALS AND METHODS

Water sampling

Water samples from 70 cooling towers in 17 Spanish cities were collected during a two-week period. From each cooling tower, 2 L of water were taken in sterile plastic containers, supplemented with 2 ml of sodium thiosulfate (3%). Selection of sampling points was carried out with the main criterion of locating a practicable area on the returning line. As a consequence, water was usually sampled in the tower basin below the filling material.

Water concentration and DNA extraction

One liter of sample was concentrated by membrane filtration using a nylon or cellulose membrane (0.45 μm porous diameter; Millipore, MA, USA). Cells were resuspended in 10 ml of sterile saline solution and vigorously vortexed for 60 s. Two milliliters of the resulting suspension were concentrated to 200 μl by centrifugation (10000 × g, 5 min) and DNA was extracted with the Omega Biotek Tissue DNA Kit (D3396-02, Norcross, GA, USA) according to the manufacturer’s instructions.

Microbiological analysis

Legionella pneumophila levels were analyzed by microbiological culture according to the ISO11731:1998(E) standard (Water quality – Detection and enumeration of Legionella). Briefly, 0.2-ml aliquots of the original and concentrated samples (heat treated, acid treated, and untreated) were spread on GVPC agar plates (Oxoid Ltd., Basingstoke, Hampshire, UK). The plates were incubated at 36°C in a humidified environment for at least 10 d and examined on days 3, 5, and 10 with a plate microscope. For each plate, at least three colonies containing possible Legionella were sub-cultured on BCYE (with cysteine) and CYE (cysteine-free) media (Oxoid Ltd.) for 3 d. Colonies grown on BCYE were subsequently identified by an agglutination test (Legionella latex test; Oxoid Ltd.). The detection limit was defined according to the Spanish quality technical regulations for cooling towers and corresponded to 100 CFU/L.

Simkania negevensis levels were analyzed by quantitative PCR (qPCR). The specific primers and probes used for DNA amplification were those described by Johnsen et al. (2005). Quantification was performed using real-time PCR with the LightCycler 1.5 PCR system (Roche Applied Science, Mannheim, Germany). The reaction mixture, 20 μl in total, consisted of 10 μl of Fast Start SYBR Green (Roche Applied Science) and 10 μl of sample, giving a final concentration of 20 μg/μl for the DNA concentration.
0.5 μmol/L of reverse (5’-GAG CTC CGG AAT TTC ACA TCT G-3’) and forward primers (5’-AAA GGT AAC GAA TAA TTG CCT-3’). The experimental LightCycler protocol was one 10-min step at 95°C for Taq polymerase activation, 45 cycles of PCR amplification (95°C for 15 s, 55°C for 30 s for annealing, and 72°C for 30 s for elongation), and a final melting temperature ramp from 65°C to 95°C at 0.1°C per second.

A positive control of Simkania DNA (kindly provided by Dr. Friedman from the Department of Virology and Genetic Development of the Faculty of Health Sciences, University of Negev, Israel) was used as a standard for DNA quantification. Serial logarithmic dilutions were carried out from 10^1 to 10^4 cells/reaction and used to construct a calibration curve. All measurements were performed in duplicate, and the efficiency of the amplification was 1.92. Samples were considered to be negative when there was no amplification or when the Tm (melting temperature) was outside of the range established in previous amplifications of the negative control (PCR-grade double-distilled water; Eppendorf, Hamburg, Germany) and the positive control (S. negevensis strain). Samples were considered to be positive when at least one of the replicates showed a Tm that fell within the positive control curve. Finally, samples were considered to be positive but not quantifiable when the amplification yielded a Tm inside the positive range but with a Ct over 40. The theoretical quantification limit was 500 cells/L calculated by the dilution method assuming a direct equivalence between the target copy and the cell. The qPCR products from positive samples were run on a 2% agarose gel using E-gel Base system equipment (Invitrogen, USA), following the manufacturer’s instructions, and confirmed by DNA sequencing (Secugen, Madrid, Spain) after purification with the Cycle Pure Kit (Omega Bio-Tek, Norcross, GA, USA). DNA sequences were analyzed using the basic local alignment search tool (BLAST) (Altschul et al. 1997) at the NCBI server (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Different researchers completed the Legionella pneumophila and Simkania negevensis analyses, and the results were not known until the end of the experiment.

RESULTS

From the 70 cooling tower samples processed, two were positive for Simkania negevensis (2.85%) and four for Legionella pneumophila (5.70%). For Simkania negevensis, only one sample showed a quantifiable level of 6.7 × 10^5 cells/L; the other one was positive but not quantifiable, as defined above (<500 cells/L). The sequencing results of the positive controls displayed a 100% identity to the corresponding 16S rRNA from Simkania negevensis Z strain (accession number NR 029194). The sequences of the PCR products obtained from the two positives cooling tower samples showed 99% (E value 5e-54) and 100% (E value 5e-50) identity with the target reference.

In the case of Legionella pneumophila, the results were 1.0 × 10^2, 2.0 × 10^2, 3.0 × 10^2, and 3.6 × 10^2 CFU/L, respectively. None of the samples was simultaneously positive for both microorganisms. In both positive cases of Simkania negevensis, the samples were collected from different industries and cities.

DISCUSSION

Because of the potential similarity between infection pathways for Legionella and Simkania, we decided to evaluate the presence of this Chlamydia-like pathogen in water from cooling towers. The prevalence of Simkania negevensis in our samples was very low (2.85%). Although Simkania negevensis is reported to be ubiquitous in water systems (Kahane et al. 2004, 2007), it may be that the presence of this pathogenic bacterium in the analyzed samples was below our detection limit.

As expected, because of the intensive control of cooling towers by Spanish public health authorities, the prevalence of Legionella pneumophila was also low (5.70%). This outcome is likely the result of good management programs focused on continuous water treatment using biocides, such as chlorine. For this reason, in cooling towers with appropriate water treatment programs, the colonization prevalence of these pathogenic microorganisms is usually low.

We also attempted to determine whether a relationship exists between S. negevensis and L. pneumophila presence because of the connection of legionellosis outbreaks from water samples of this type and the two pathogen’s relationship with respiratory tract infections (Stout & Yu 1997; Swanson & Hammer 2000). This hypothesis could not be addressed because of the small percentage of either type of
bacteria measured in the cooling towers. Systems that are under tight control may not usually represent a significant sanitary risk for the development of pulmonary infectious diseases caused by these microorganisms. Thus, the risk of contagion from Simkania by other infection routes and its effect on public health as a potential opportunistic pathogen remain unclear.

In conclusion, efficient management treatments to avoid colonization of cooling towers by Legionella seem to have positively affected microbial water quality and may have reduced the presence of another emergent pathogenic microorganism, Simkania negevensis, to a non-detectable level. We did, however, detect Simkania DNA in 2 of 70 cooling towers analyzed, the first report of Simkania detection in this type of environmental water sample in Spain.

ACKNOWLEDGEMENTS

We thank Dr Friedman from the Department of Virology and Genetic Development of the Faculty of Health Sciences, University of Negev, Israel, for kindly providing the positive control strain of Simkania negevensis. We also thank the Ministry of Education and Science of Spain and the Comissionat per a Universitats i Recerca del Departament d’Innovació, Universitats i Empresa de la Generalitat de Catalunya i del Fons Social Europeu, for supporting this study.

REFERENCES

First received 6 July 2010; accepted in revised form 10 November 2010. Available online 23 December 2010