The detection of *Yersinia enterocolitica* in surface water by quantitative PCR amplification of the *ail* and *yadA* genes

Bo M. Cheyne, Michele I. Van Dyke, William B. Anderson and Peter M. Huck

ABSTRACT

Yersinia enterocolitica has been detected in surface water, and drinking untreated water is a risk factor for infection. PCR-based methods have been used to detect *Y. enterocolitica* in various sample types, but quantitative studies have not been conducted in water. In this study, quantitative PCR (qPCR)-based methods targeting the *Yersinia* virulence genes *ail* and *yadA* were used to survey the Grand River watershed in southern Ontario, Canada. Initial testing of reference strains showed that *ail* and *yadA* PCR assays were specific for pathogenic biotypes of *Y. enterocolitica*; however the genes were also detected in one clinical *Yersinia intermedia* isolate. A survey of surface water from the Grand River watershed showed that both genes were detected at five sampling locations, with the *ail* and *yadA* genes detected in 38 and 21% of samples, respectively. Both genes were detected more frequently at colder water temperatures. A screening of *Yersinia* strains isolated from the watershed showed that the *ail* gene was detected in three *Y. enterocolitica* 1A/O:5 isolates. Results of this study show that *Yersinia* virulence genes were commonly detected in a watershed used as a source of drinking water, and that the occurrence of these genes was seasonal.

Key words | biotype 1A, PCR, surface water, virulence genes, watershed, *Yersinia*

INTRODUCTION

Yersinia enterocolitica is an emerging waterborne pathogen *(Sharma et al. 2003)* and a well-known foodborne pathogen *(Fredriksson-Ahomaa & Korkeala 2003).* Illness caused by *Y. enterocolitica* infection can result in a wide variety of disease symptoms, including those usually associated with gastrointestinal disease such as fever, abdominal pain and diarrhoea *(Bottone 1997).* However, the consequences of infection can be more serious, particularly in sensitive populations *(Bottone 1997; Wanger 2007).* Pigs have been identified as a major reservoir of human pathogenic strains *(McNally et al. 2004; Fredriksson-Ahomaa et al. 2006)*. While most cases of *Y. enterocolitica* infection are sporadic and a source is rarely identified *(Bottone 1997)*, *Y. enterocolitica* has been implicated in waterborne illness. Human cases of disease caused by *Y. enterocolitica* were linked to the consumption of water from untreated wells *(Lassen 1972; Christensen 1979; Thompson & Gravel 1986)* and surface water *(Keet 1974).* Untreated water used in a tofu manufacturing plant also caused an outbreak of yersiniosis *(Tacket et al. 1985).* Furthermore, drinking untreated water was shown to be a risk factor for *Y. enterocolitica* infections *(Ostroff et al. 1994; Saeko et al. 1994; Satterthwaite et al. 1999).* While these studies indicate that water can be route of transmission for yersiniosis, the source of most enteric disease incidents is rarely identified, indicating a need to improve...
surveillance and reporting for disease occurrence and transmission routes.

Surveys for *Y. enterocolitica* in surface water, well water and other water sources have been conducted. Culture-based surveys for *Y. enterocolitica* in water have usually resulted in low occurrence rates (Shayegani *et al.* 1981; Meadows & Snudden 1982; Vajdic 1985; Massa *et al.* 1988; Gonul & Karapinar 1991; Brennhovd *et al.* 1992; Arvanitidou *et al.* 1994; Sandery *et al.* 1996; Schaffter & Parriaux 2002; Cheyne *et al.* 2009), although higher prevalence rates have been reported (Langeland 1983; Weagent & Kaysner 1983; Fukushima *et al.* 1984). In most cases, non-pathogenic *Yersinia* strains were more frequently isolated, including *Yersinia frederiksenii*, *Y. intermedia*, *Yersinia kristensenii* and non-pathogenic *Y. enterocolitica* subtypes. Pathogenic strains have been isolated from water in only a small number of studies (Fukushima *et al.* 1984; Sandery *et al.* 1996; Falcão *et al.* 2004). Investigations of pig tissues and food have found that the prevalence of pathogenic *Y. enterocolitica* was higher using PCR-based methods compared with culture-based methods (Fredriksson-Ahoma 1998; Johannessen *et al.* 2000; Vishnubhatla *et al.* 2000; Boyapalle *et al.* 2001; Bhaduri *et al.* 2005; Cocolin & Comi 2005; Thisted Lambertz & Danielsson-Tham 2005; Fredriksson-Ahoma 2006). One study that examined surface waters for pathogenic *Y. enterocolitica* showed detection rates of 1% and 10% using culture-based and PCR-based methods, respectively (Sandery *et al.* 1996). However, there have been limited studies using molecular-based approaches to evaluate the occurrence of *Y. enterocolitica* in environmental waters. Consequently, this route of transmission has not yet been thoroughly investigated.

The objective of this study was to develop and evaluate quantitative PCR (qPCR)-based methods for detecting *Y. enterocolitica* virulence genes in surface water samples. There are a number of genes involved in *Y. enterocolitica* virulence pathways (Revell & Miller 2001). The chromosomal *ail* gene plays a role in the attachment and invasion of host cells (Bottone 1997), and has been found primarily in *Y. enterocolitica* serotypes associated with disease (Miller *et al.* 1989; Revell & Miller 2001; Howard *et al.* 2006). The *yadA* gene is located on the pYV virulence plasmid and codes for a protein that promotes adherence to mucus layers, attachment to host cells and enhances serum resistance (Bottone 1997; Cornelis *et al.* 1998), and is only associated with pathogenic subtypes of *Y. enterocolitica* (Robins-Browne *et al.* 1989; Fredriksson-Ahoma 2006). In this paper we describe the development and evaluation of qPCR assays that target the *ail* and *yadA* genes to assess the prevalence of pathogenic *Y. enterocolitica* in surface water from the Grand River watershed.

The Grand River watershed is located in southern Ontario, Canada. It provides part of the drinking water supply for approximately 500,000 people, and is also used for recreational activities (Dorner *et al.* 2004). This system is one of the most heavily impacted watersheds in Canada, receiving inputs from both agricultural and urban activities (Dorner *et al.* 2004), and a number of enteric pathogens typically found in surface waters have been previously detected (Dorner *et al.* 2007). This research provides information for an emerging waterborne pathogen that is not well characterized in water sources. The provision of data on pathogen occurrence in source waters is needed to better understand environmental contributions to human disease risk.

MATERIALS AND METHODS

DNA extraction from pure cultures

Yersinia strains were obtained from the Toronto Central Public Health Laboratory at the Ontario Agency for Health Protection and Promotion (Etobicoke, Ontario), the American Type Culture Collection (ATCC), or were isolated by our group from the Grand River watershed (Cheyne *et al.* 2009). *Pseudomonas aeruginosa* UG2Lr was provided by Drs H. Lee and J. T. Trevors, University of Guelph (Guelph, Ontario). *Yersinia* spp. were grown in tryptic soy broth (TSB) (BD Biosciences) at 28°C and non-*Yersinia* spp. in nutrient broth (BD Biosciences) at 37°C for 16–20 h. Genomic DNA was extracted from 1 ml of broth culture using the Qiagen DNeasy blood and tissue kit according to the manufacturer’s instructions.

Quantitative PCR assays

The primers and probe for the *ail* gene target (Table 1) were designed by Bhaduri *et al.* (2005) (the authors were
contacted to obtain the correct sequence for the \textit{ail} reverse primer). The \textit{yadA} primers and probe (Table 1) were designed using Beacon Designer 2.1 software (BioRad) and gene sequence data from the National Center for Biotechnology Information (NCBI). Primers and probes were purchased from Sigma-Genosys. Probes were 5’-labelled with 6-carboxyfluorescein (FAM) and 3’-labelled with Black Hole Quencher 1 (BHQ1).

Reaction mixtures for the PCR assays contained (per 50 µl); DNA template, 300 nM forward primer, 300 nM reverse primer, 100 nM probe, 3.5 mM MgCl\textsubscript{2}, 1 × PCR buffer (10 mM Tris-HCl [pH 8.3], 50 mM KCl), 1.25 U Jumpstart Taq polymerase, and 200 µM dNTPs. All PCR reagents were purchased from Sigma-Aldrich. Cycling conditions for the \textit{ail} assay were: one cycle at 95°C for 3 min; 50 cycles at 95°C for 15 s, 58°C for 30 s, and 72°C for 30 s; and one cycle at 72°C for 10 min. Cycling conditions for the \textit{yadA} assay were: one cycle at 95°C for 3 min; 50 cycles at 95°C for 15 s, 60°C for 30 s, and 72°C for 30 s; and one cycle at 72°C for 10 min. Reactions were performed in a 96-well plate (Bio-Rad) using a Bio-Rad iCycler iQ Real-Time PCR Detection System with version 3.1 software for data analysis. Each assay included DNA standards to generate standard curves and also negative (no template) controls. Standard curve reproducibility was tested by analysing in duplicate each of two separate dilution series. The detection limit for each PCR assay was determined by testing a dilution series of DNA standards at 10 replicates per dilution.

\textbf{Surface water collection}

Between March 2005 and August 2007, surface water samples were collected at five sites in the Grand River watershed (Figure 1). Using 2006–2007 data provided by the Water Survey of Canada (www.wsc.ec.gc.ca), average flow rates were 1.4 m3 s-1 in the Canagagigue Creek, 10 m3 s-1 in the Conestogo River, 15 m3 s-1 at the Grand River North site and 23 m3 s-1 in the Grand River at the drinking water intake. Samples were taken every other week and when possible following heavy rainfall and spring snow melt events, and were collected 2–3 m from the river’s edge and 10–20 cm below the surface at a fast flowing area. Water was collected in sterile 1-l polypropylene, widemouth bottles (VWR) and transported on ice. Samples were stored at 4°C and analysed within 24 h of collection. Water temperature was measured in the field. Total \textit{Escherichia coli} concentrations were determined as described by Ciebin et al. (1995). Turbidity was analysed using a Hach 2100P turbidity meter, and ammonia and

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{ail} forward primer</td>
<td>5’-GGTCATGGTGATGTGATTACTATTCA-3’</td>
</tr>
<tr>
<td>\textit{ail} reverse primer</td>
<td>5’-CGGCCCCAGTAATCCATA-3’</td>
</tr>
<tr>
<td>\textit{ail} probe</td>
<td>5’-[FAM]-CATCTTTCGCATCAAGGAATATGGTGCAC- [BHQ1]-3’</td>
</tr>
<tr>
<td>\textit{yadA} forward primer</td>
<td>5’-GATATCCATGGTGCTGAAAGGACCT-3’</td>
</tr>
<tr>
<td>\textit{yadA} reverse primer</td>
<td>5’-CTTTCTTTAATTGCGCCACATCA-3’</td>
</tr>
<tr>
<td>\textit{yadA} probe</td>
<td>5’-[FAM]-TTGACACATCTTGGCGTGGCCTGAC- [BHQ1]-3’</td>
</tr>
<tr>
<td>\textit{luxB} forward primer</td>
<td>5’-GGGTACTGCCATCCAAAACATGA-3’</td>
</tr>
<tr>
<td>\textit{luxB} reverse primer</td>
<td>5’-TTCTTTGCTCAGCGCATCACA-3’</td>
</tr>
<tr>
<td>\textit{luxB} probe</td>
<td>5’-[HEX]-CGCAGGACCGCTTACGTAACGC- [BHQ1]-3’</td>
</tr>
</tbody>
</table>
Nitrate were monitored using the Hach NitraVer 5 and AmVer Test’N Tube reagent kits.

DNA extraction and PCR amplification of surface water samples

The surface water DNA extraction protocol was based on methods by Pitcher et al. (1989) and Boom et al. (1990). For each sample, a 1.5 l volume was filtered using two 0.45 µm (47 mm) Supor membrane filters (Pall Corporation). Each filter was placed in a separate 3 ml centrifuge tube containing 1.5 ml of guanidine isothiocyanate (GITC) extraction buffer (5 M GITC, 0.1 M ethylenediaminetetraacetic acid [pH 8.0], 5 g l⁻¹ N-laurylsarcosine), then stored at −20 ºC for up to 2 weeks. The tubes were then rotated vertically for at least 1 h at room temperature and centrifuged at 15,000 × g for 5 min. The supernatant was passed through DNeasy purification columns (Qiagen), washed and eluted in 200 µl of AE buffer according to the manufacturer’s instructions. DNA preparations were stored at −80 ºC until analysis. For each sampling event, a negative control was prepared by using the same DNA extraction and purification reagents as surface water samples.

DNA from surface water samples was analysed using the quantitative ail and yadA PCR assays described above.

A 15.3 µl volume of DNA, corresponding to 100 ml of surface water, was added to each reaction. DNA standards were analysed in duplicate to generate standard curves. PCR inhibition was tested using an external PCR assay, in which the luxB gene from P. aeruginosa UG2Lr (Fleming et al. 1994) was amplified together with DNA from surface water samples. An internal inhibition assay was used because internal assays were found to prevent amplification of the target gene at low concentrations (data not shown). The luxB primers and probe (Table 1) were designed using Beacon Designer 2.1 software (Bio-Rad) and the luxB gene sequence (NCBI accession number E12410). The luxB probe was 5’-labelled with hexachloro-6-carboxyfluorescein (HEX) and 3’-labelled with BHQ1 (Sigma-Genosys). Genomic DNA containing the luxB gene was extracted from P. aeruginosa UG2Lr as described above. Each 50 µl luxB assay reaction was prepared as described above and contained both luxB DNA template (5 × 10² cells/reaction) and DNA from a Grand River sample. Control reactions containing only the luxB DNA template were prepared in triplicate. Cycling conditions were: one cycle at 95 ºC for 3 min; 40 cycles at 95 ºC for 15 s, 60 ºC for 30 s, and 72 ºC for 30 s; and one cycle at 72 ºC for 10 min. If the luxB amplification signal was inhibited, as indicated by a reduced C_T value or reduced signal intensity, the surface water DNA sample was repurified using the Qiagen DNeasy purification kit and tested again for inhibition.

Recovery of Y. enterocolitica from surface water

Y. enterocolitica (ATCC 700822) inoculum was prepared in 10 ml TSB and incubated at 28 ºC for 24 h. A series of five dilutions ranging from 10² to 10⁷ cells ml⁻¹ were prepared in phosphate-buffered water (PBW) (0.3 mM KH₂PO₄, 2 mM MgCl₂·H₂O, pH 7.2), and 1 ml of each dilution was spiked into 1 l of surface water from the Grand River. The entire sample was processed by filtration using the surface water DNA extraction protocol. DNA was also extracted from 1 l of unspiked water from the Grand River. Controls were prepared from 1 ml of each inoculum dilution using the Qiagen DNeasy kit. All treatments and controls were done in triplicate; 20 µl aliquots of each DNA sample were analysed in duplicate using the ail qPCR assay.
Confirmation of PCR results

The *ail* and *yadA* PCR amplification products from selected Grand River water samples were analysed by agarose gel electrophoresis; 5 μl aliquots from each reaction were analysed on 2% agarose gels stained with ethidium bromide. Selected amplification products were also cloned using TOPO® cloning vectors and One Shot® TOP10 competent cells (Invitrogen). One or two cloned plasmids from each sample were purified using the PureLink™ Quick Plasmid miniprep kit (Invitrogen), and sequence analysis was done at Laboratory Services, University of Guelph, Guelph, Ontario.

RESULTS

DNA standards

DNA standards for the *ail* and *yadA* PCR assays resulted in reproducible standard curves with R^2 values of 0.98 or greater and slopes between 3.2 and 3.6. According to Zhang & Fang (2006), a reliable qPCR standard curve should have an R^2 value greater than 0.95 and a slope between 3.0 and 3.9. The detection limit was established using the criteria of Behets et al. (2007), and for both the *ail* and *yadA* PCR assay was between 5 and 8 cells per reaction (data not shown). When the *yadA* assay was initially used with genomic DNA standards from *Y. enterocolitica* ATCC 700822 (serotype O:3), threshold cycle (C_T) values were significantly higher than those of the *ail* assay. This may have been due to lower specificity of the assay for this particular strain, or possibly due to plasmid loss. *Y. enterocolitica* can lose the pYV virulence plasmid during culturing or storage (Blais & Phillippe 1995), and other researchers that had difficulties in obtaining sufficient pYV plasmid attributed the problem to plasmid loss (Robins-Browne et al. 1989). A synthetic oligonucleotide DNA standard derived from a different O:3 strain resulted in C_T values similar to those of the *ail* PCR assay, and this standard was used for all *yadA* PCR assays.

Table 2 | Occurrence of *ail* and *yadA* genes in *Yersinia* reference strains obtained from culture collections; all of the reference strains were isolated from clinical or porcine sources

<table>
<thead>
<tr>
<th>Yersinia species</th>
<th>Biogroup</th>
<th>Serogroup</th>
<th>Source*</th>
<th>ail gene</th>
<th>yadA gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y. enterocolitica</td>
<td>1A</td>
<td>O:7,13</td>
<td>OAHPP</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Y. enterocolitica</td>
<td>1A</td>
<td>O:41,42</td>
<td>OAHPP</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Y. enterocolitica</td>
<td>1B</td>
<td>O:8</td>
<td>ATCC 9610</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Y. enterocolitica</td>
<td>1B</td>
<td>O:8</td>
<td>OAHPP</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Y. enterocolitica</td>
<td>1B</td>
<td>O:8</td>
<td>OAHPP</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Y. enterocolitica</td>
<td>1B</td>
<td>O:21</td>
<td>OAHPP</td>
<td>+</td>
<td>–</td>
</tr>
<tr>
<td>Y. enterocolitica</td>
<td>2</td>
<td>O:5,27</td>
<td>OAHPP</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Y. enterocolitica</td>
<td>2</td>
<td>O:9</td>
<td>OAHPP</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Y. enterocolitica</td>
<td>3</td>
<td>O:1,2,3</td>
<td>OAHPP</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Y. enterocolitica</td>
<td>4</td>
<td>O:3</td>
<td>OAHPP</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Y. enterocolitica</td>
<td>4</td>
<td>O:3</td>
<td>ATCC 700822</td>
<td>+</td>
<td>+†</td>
</tr>
<tr>
<td>Y. pseudotuberculosis</td>
<td>III</td>
<td></td>
<td>OAHPP</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Y. pseudotuberculosis</td>
<td>I</td>
<td></td>
<td>OAHPP</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>Y. frederiksenii</td>
<td></td>
<td></td>
<td>OAHPP</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Y. intermedia</td>
<td></td>
<td></td>
<td>OAHPP</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Y. kristensenii</td>
<td></td>
<td></td>
<td>OAHPP</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Y. mollaretii</td>
<td></td>
<td></td>
<td>OAHPP</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Y. rohdei</td>
<td></td>
<td></td>
<td>OAHPP</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Yersinia strains were obtained from either the Central Public Health Laboratory at the Ontario Agency for Health Protection and Promotion (OAHPP) or the American Type Culture Collection (ATCC).

†Weak signal.
Primer and probe specificity

The ail and yadA assays were tested on Yersinia strains obtained from culture collections, and included strains from clinical and porcine samples. Results for Y. enterocolitica reference strains show that the ail gene was not present in the two biotype 1A isolates tested, but the gene was present in all pathogenic biotypes (1B, 2, 3, 4) except one 1B/O:8 strain (ATCC 9610) (Table 2). The results for yadA gene detection in Y. enterocolitica were similar, except this gene was not detected in two 1B strains (serotypes O:8 and O:21) and was detected only weakly in the ATCC 700822 strain (serotype O:3). Both the ail and the yadA gene were present in the one clinical Y. intermedia isolate, and only the yadA gene was detected in Yersinia pseudotuberculosis strains. Neither gene was observed in the other Yersinia species tested (Table 2).

The detection of ail and yadA genes was also performed on Yersinia strains that were isolated from the Grand River watershed (Cheyne et al. 2009). Results showed that only the ail gene was detected in three strains of Y. enterocolitica 1A, serotype O:5 (Table 3). The yadA gene was not detected in these serotype O:5 isolates. The ail and yadA genes were not detected in any other Y. enterocolitica 1A isolates or in other Yersinia species isolated from the watershed (Table 3). Results for ail gene detection in both reference strains and watershed isolates was confirmed using the primers designed by Thisted Lambertz et al. (2008) (data not shown).

Recovery studies

The recovery and detection of Y. enterocolitica ATCC 700822 added to surface water samples was assessed. Y. enterocolitica was inoculated into surface water at five different concentrations that ranged from 1×10^1 to 1×10^4 cells/100 ml, and the DNA recovered from each sample was tested using the ail qPCR assay. Recovery was found to range from 24 to 37%. An ail signal could be detected in two of three water samples spiked at 1×10^1 cells/100 ml, and in all samples spiked at 5×10^4 cells/100 ml or higher. The detection of microbial pathogens in environmental samples by PCR is often affected by DNA loss during the extraction and purification steps, and incomplete removal of PCR inhibitors (Toze 1999). Surface water in the Grand River watershed has a high turbidity (1–688 NTU) and high total organic carbon content (5–10 mg l$^{-1}$) (data not shown). However, the DNA extraction and purification method used in this study

<table>
<thead>
<tr>
<th>Yersinia species</th>
<th>Biogroup</th>
<th>Serogroup</th>
<th>Isolates tested</th>
<th>ail positive</th>
<th>yadA positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y. enterocolitica</td>
<td>1A</td>
<td>O:5</td>
<td>5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Y. enterocolitica</td>
<td>1A</td>
<td>O:5,27</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y. enterocolitica</td>
<td>1A</td>
<td>O:7,8</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y. enterocolitica</td>
<td>1A</td>
<td>O:7,13</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y. enterocolitica</td>
<td>1A</td>
<td>O:41,43</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y. enterocolitica</td>
<td>1A</td>
<td>O:rough</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y. enterocolitica</td>
<td>1A</td>
<td>O:untypeable</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y. aldovae</td>
<td></td>
<td></td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y. bercovieri</td>
<td></td>
<td></td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y. frederiksenii</td>
<td></td>
<td></td>
<td>18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y. intermedia</td>
<td>1</td>
<td></td>
<td>28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y. intermedia</td>
<td>4</td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y. kristensenii</td>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y. mollaretii</td>
<td></td>
<td></td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y. rohdei</td>
<td></td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
could effectively remove PCR inhibitors from surface water, with an average recovery of 31% for the *ail* qPCR assay.

Grand River watershed survey

Surface water samples were collected from five sites in the Grand River watershed. These included a point in the Grand River north of Kitchener-Waterloo, the Canagagigue Creek and Conestogo River just before each tributary meets the Grand River, and in the Grand River just downstream of a wastewater treatment plant effluent, and just upstream of a drinking water treatment plant intake (Figure 1). Surface water was collected biweekly between March 2005 and August 2007 and tested for the *ail* gene, and between January 2006 and August 2007 for the *yadA* gene. DNA extracted from surface water was tested for PCR inhibition using an external *luxB* inhibition assay. It was found that the extraction method used in this study resulted in DNA that rarely contained PCR inhibitors. Target concentrations determined by qPCR were not adjusted for recovery efficiency.

The *ail* and *yadA* genes were detected at all five sites examined in the Grand River watershed (Table 4). The *ail* gene target was detected in 121 out of 319 samples (38%), and the *yadA* gene target was detected in 44 out of 206 samples (21%). There were 31 samples (15%) that were positive for both gene targets. The frequency of detecting the *ail* target was consistently higher than the *yadA* target at all five sampling sites. The median values observed across the watershed for *ail* and *yadA* were 40 cells/100 ml and 32 gene copies/100 ml, respectively, and the maximum values detected were 2,000 cells/100 ml and 3,276 gene copies/100 ml, respectively. Both targets were detected most frequently at the Canagagigue Creek sampling location, at a frequency of 50% and 26% for *ail* and *yadA*, respectively. Canagagigue Creek samples also showed the second highest median concentration for indicator *E. coli* (not shown). The highest median concentration for indicator *E. coli* was detected in the Grand River just downstream of a wastewater effluent discharge (data not shown), but this did not correspond with high *Y. enterocolitica* virulence gene detection (Table 4).

Yersinia enterocolitica *ail* and *yadA* genes were detected more frequently when water temperatures were colder. A seasonal trend for *ail* and *yadA* genes can be seen in Figure 2, which shows the concentration of each gene target and water temperature for two sites in the Grand River over the sampling period. The frequency for detecting the *ail* and *yadA* genes increased as the water temperature decreased (Figure 3). For samples taken at temperatures below 5°C, 67% were positive for the *ail* gene and 35% for the *yadA* gene. In contrast, at temperatures above 20°C the virulence genes were detected in less than 12% of samples. There was no relationship between *ail* or *yadA* gene occurrence and other water quality parameters, including total *E. coli*, turbidity, nitrate and ammonia (not shown).

Confirmation of quantitative PCR results

Amplification products from selected positive *ail* and *yadA* samples were analysed by agarose gel electrophoresis, and

<table>
<thead>
<tr>
<th>Sample location</th>
<th>Number of samples analysed</th>
<th>Frequency of positive samples (%)</th>
<th>Median value* (cells or gene copies/100 ml)</th>
<th>Maximum value (cells or gene copies/100 ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ail</td>
<td>yadA</td>
<td>ail</td>
<td>yadA</td>
</tr>
<tr>
<td>Grand River (North)</td>
<td>64</td>
<td>42</td>
<td>47</td>
<td>21</td>
</tr>
<tr>
<td>Canagagigue Creek</td>
<td>64</td>
<td>42</td>
<td>50</td>
<td>26</td>
</tr>
<tr>
<td>Conestogo River</td>
<td>64</td>
<td>41</td>
<td>27</td>
<td>18</td>
</tr>
<tr>
<td>Grand River (WW)</td>
<td>66</td>
<td>41</td>
<td>32</td>
<td>22</td>
</tr>
<tr>
<td>Grand River (Intake)</td>
<td>61</td>
<td>40</td>
<td>34</td>
<td>20</td>
</tr>
<tr>
<td>Overall</td>
<td>319</td>
<td>206</td>
<td>38</td>
<td>21</td>
</tr>
</tbody>
</table>

Median values were calculated using positive samples only.
DNA fragments of the correct size (91 and 97 bp for \textit{ail} and \textit{yadA}, respectively) were present (data not shown). Amplified fragments from selected PCR reactions were also sequenced. Cloned \textit{ail} amplification products (NCBI accession #EU780661, EU780662, EU780663) from two river water samples had 100% homology, and a BLASTN search of the NCBI database showed 96–100% similarity with \textit{Y. enterocolitica} \textit{ail} gene sequences. Cloned \textit{yadA} amplification products (EU780664, EU780665) from two river water samples had 100% homology, and 96–98% similarity with \textit{yadA} genes from \textit{Y. enterocolitica}, \textit{Y. pseudotuberculosis} and \textit{Yersinia pestis}. This was not unexpected, as the \textit{yadA} primers and probe could detect \textit{yadA} genes from all three species.

DISCUSSION

In this study, qPCR methods for detecting \textit{Y. enterocolitica} in surface water were evaluated that targeted two different genes, a chromosomal gene (\textit{ail}) and a plasmid-borne gene (\textit{yadA}). The \textit{ail} and \textit{yadA} genes were selected because they play critical roles in the virulence pathways of \textit{Y. enterocolitica}. The occurrence of \textit{ail} and \textit{yadA} genes were tested in a number of pathogenic and non-pathogenic serotypes of \textit{Y. enterocolitica} and also in other \textit{Yersinia} strains. The species \textit{Y. enterocolitica} is divided into six biogroups, 1A, 1B, and 2 through 5, and into more than 50 serogroups (Wauters et al. 1987). Pathogenicity has traditionally been associated with certain biogroups and serogroups, specifically 1B/O:8, 2/O:5,27, 2/O:9, 3/O:3 and 4/O:3 (Fredriksson-Ahomaa et al. 2006). Other \textit{Yersinia} species known to cause disease in humans include \textit{Y. pseudotuberculosis} and \textit{Y. pestis}. \textit{Y. pseudotuberculosis} is also a zoonotic pathogen that has been identified as the causative agent in both food-borne and waterborne disease (Han et al. 2003; Jalava et al. 2006). In addition, other \textit{Yersinia} species in the \textit{Y. enterocolitica}-like group include \textit{Y. intermedia}, \textit{Y. frederiksenii}, \textit{Y. kristensenii}, \textit{Yersinia aldovae}, \textit{Yersinia rohdei}, \textit{Yersinia bercovieri} and \textit{Yersinia mollaretii}. Although these are considered to be non-pathogenic species, the clinical significance of this group is not fully known (Sulakvelidze 2000).
We initially tested a number of reference strains isolated from clinical or porcine samples for the presence of the *ail* and *yadA* virulence genes (Table 2). Results for the *Y. enterocolitica* reference strains show that *ail* and *yadA* genes were specific for the pathogenic *Y. enterocolitica* biogroups (1B, 2, 3, 4), and they were not detected in biogroup 1A (Table 2). The *ail* and *yadA* genes were not detected in *Y. enterocolitica* ATCC 9610, which has been observed previously (Blais & Phillippe 1995; Thoerner et al. 2003). The *yadA* gene was also not detected in a *Y. enterocolitica* 1B/O:21 strain. The detection of chromosomal virulence genes and not pYV plasmid genes in *Y. enterocolitica* was also observed in other studies, with plasmid loss as a possible reason (Blais & Phillippe 1995; Thoerner et al. 2003). As expected, the *Y. pseudotuberculosis* strains examined in our study were negative for the *ail* gene and positive for the *yadA* gene (Table 2). There is an *ail* homolog in *Y. pseudotuberculosis* (Yang et al. 1996), but the *ail* primers used in this study were designed specifically to target *Y. enterocolitica* (Jourdan et al. 2000; Bhaduri et al. 2005). Our results also showed that both the *ail* and *yadA* virulence genes were detected in a clinical *Y. intermedia* strain (Table 2). Although *Y. intermedia* strains are considered non-pathogenic, they may have some potential for causing disease and have been isolated from symptomatic patients (Sulakvelidze 2000). In a study by Robins-Browne et al. (1989), a DNA probe targeting the *ail* gene hybridized with a *Y. intermedia* strain, and Kechagia et al. (2007) detected two plasmid-borne genes, *virF* and *yadA*, and the chromosomal gene *yst* in a *Y. intermedia* strain. The *ail* and *yadA* genes were not detected in reference strains from the other *Yersinia* species, including *Y. frederiksenii*, *Y. kristensenii*, *Y. mollaretii* and *Y. rohdei* (Table 2).

We also screened a large number of *Yersinia* isolates that were obtained from the Grand River watershed by our group from 2006–2008 (Cheyne et al. 2009). As shown in Table 3, only non-pathogenic bioserogroups were isolated from the watershed, which may have been due in part to the poor recovery of pathogenic serogroups by current culture-based detection methods (Cheyne et al. 2009). Results showed that the *ail* gene was detected in three *Y. enterocolitica* 1A/O:5 isolates. Two additional 1A/O:5 strains were negative for the *ail* gene, and all strains from this bioserogroup were negative for the *yadA* gene. The *ail* and *yadA* genes were not detected in the other isolates tested, including 12 other isolates from biogroup 1A (serogroups O:5,27, O:7,8, O:41,43, O:rough and O:untype-able) and 77 isolates from other species including *Y. aldovae*, *Y. bercovieri*, *Y. frederiksenii*, *Y. intermedia*, *Y. kristensenii*, *Y. mollaretii* and *Y. rohdei*. Although most reports show that the *ail* gene is only present in pathogenic serogroups, some studies have shown that the *ail* gene was detected in biotype 1A strains (Thoerner et al. 2003; Falcão et al. 2006; Zheng et al. 2008). Serotype O:5 strains have been isolated from a number of clinical samples throughout the world (Tennant et al. 2005), including a nosocomial outbreak in Canada (Ratnam et al. 1982).

Although the clinical significance of biotype 1A strains is unclear, it is now thought that biogroup 1A may include representatives of both non-pathogenic and clinically important strains (Grant et al. 1998; Gulati & Virdi 2007). The virulence potential of this group of organisms is not well understood, in part because most clinical isolation methods are not suitable for biotype 1A strains, and the detection of non-pathogenic species is often not reported (Tennant et al. 2005). It is also thought that species other than *Y. enterocolitica* may play a role in disease (Sulakvelidze 2000); however we did not detect virulence genes in any of the *Y. enterocolitica*-like species from the Grand River. We did detect the *ail* and *yadA* genes in a *Y. intermedia* reference strain from a clinical source; however the aetiology and significance of this finding is not known. Further investigations will be necessary to better characterize these species and evaluate their potential for human pathogenicity.

A focus of our study was to use the *ail* and *yadA* qPCR assays to directly assess gene occurrence in surface water samples from the Grand River watershed in southern Ontario, Canada. Samples were collected over a 2-year period from locations in the watershed upstream of a drinking water treatment plant intake (Figure 1). Results showed that the overall detection frequency was 38% for the *ail* gene and 21% for the *yadA* gene. Both gene targets were detected most frequently at the Canagagigue Creek sampling location. The Canagagigue Creek subwatershed is located in a region with the highest livestock density in the watershed (Dorner et al. 2007) and where estimates for daily
manure production were also highest (Dorner et al. 2004). Furthermore, pigs are a major reservoir for human pathogenic strains (McNally et al. 2004; Fredriksson-Ahomaa et al. 2006) and were the second most abundant livestock in the watershed (Dorner et al. 2004). In a study related to this current research, Y. enterocolitica were isolated from pig faeces on farms in the Grand River watershed in 2006, and the majority of isolates were from the pathogenic serogroup 4/O:3 (Public Health Agency of Canada 2007). In addition to agricultural runoff, it is possible that wildlife may play a role in the detection of Yersinia in the watershed. Although the occurrence of Yersinia in wildlife is not well studied, reports have shown that Y. enterocolitica and Y. pseudotuberculosis, including human pathogenic strains, have been isolated from wild birds and animals (Hacking & Sileo 1974; Shayegani et al. 1986; Fukushima & Gomyoda 1991; Niskanen et al. 2005).

A clear relationship between the occurrence of the Y. enterocolitica virulence genes and water temperature was demonstrated, and showed a higher frequency of detection in colder water. A relationship between water temperature and occurrence of Yersinia spp. has been observed previously. Massa et al. (1988) isolated Y. enterocolitica and other Yersinia spp. from surface waters in Italy and found most isolates during the colder months of the year when the water was between 5 and 10°C. Two other culture-based surveys for Yersinia in water also noted a higher rate of isolation during colder months of the year (Meadows & Snudden 1982; Fukushima et al. 1984). The ail gene has been detected in pig faeces at a higher rate during colder months of the year (Bhaduri et al. 2005), and Y. enterocolitica also seems to be isolated more frequently from humans living in countries with cooler climates (Kapperud 1991). Unlike other members of the family Enterobacteriaceae, Y. enterocolitica survives well at cold temperatures (Fredriksson-Ahomaa & Korkeala 2005). Moreover, Schiemann & Olson (1984) demonstrated that, while Y. enterocolitica grew poorly in competition with other organisms at higher temperatures (25 and 32°C), growth rates were no longer impeded by other organisms when grown at 15°C. Fukushima et al. (1984) also postulated that the unique growth characteristics of Y. enterocolitica may contribute to the observed temperature trends.

Previous surveys for Y. enterocolitica in surface waters have primarily used culture-based methods, and pathogenic sub-types have rarely been isolated from water. Sandery et al. (1996) used PCR detection of the Y. enterocolitica ail gene and found 11 out of 105 surface water samples (10%) were positive from creeks and reservoirs in Australia. These researchers also conducted a concurrent culture-based survey and only 1% of the isolates tested were positive for the ail gene. In parallel with our study, we also conducted a culture-based survey for Y. enterocolitica in the Grand River watershed (Cheyne et al. 2009). The isolation rate of Y. enterocolitica from Grand River samples was 4%, and the isolates were all determined to belong to the traditionally non-pathogenic biotype 1A.

In our survey of virulence genes in surface waters, it is possible that positive signals obtained for the ail gene target resulted from biotype 1A strains, since this gene was found in several Y. enterocolitica 1A/O:5 isolated from the watershed (Table 3). However, the detection of yadA genes in surface water samples, although at a lower frequency than that of the ail gene, show that our survey was likely detecting pathogenic Yersinia species. The yadA gene was not detected in any of the Yersinia isolates from the watershed, and in general it has been shown that the pYV plasmid is only found in pathogenic strains. Due to the high homology between the pYV plasmids of Y. enterocolitica and Y. pseudotuberculosis, it is possible that the yadA assay detected the presence of both species in the watershed. Y. pseudotuberculosis has been previously isolated from water (Fukushima 1992; Han et al. 2003). It is unlikely that Y. pestis was detected, as it is primarily contained within a sylvatic reservoir and is not transmitted by water (Stenseth et al. 2008). In addition, it is likely that our results are an overestimation of viable pathogenic Y. enterocolitica in the watershed, since PCR-based detection methods are known to also detect non-viable cells.

CONCLUSIONS

This study demonstrates that qPCR-based methods are effective and sensitive tools for enumerating Y. enterocolitica in water samples. This is the first study to use qPCR methods for water samples, and results showed that Y. enterocolitica ail and yadA genes were detected in surface water samples at low levels and their occurrence was seasonal. These results
indicate that pathogenic *Y. enterocolitica* may have been present in surface waters from the Grand River watershed. Further investigation is necessary to determine whether low levels of pathogenic *Y. enterocolitica* in these surface waters pose a risk to human health, since the concentrations detected were lower than the infectious dose for *Y. enterocolitica* (Hunter 1997). Furthermore, given that gene targets were more prevalent in cold water, it seems likely that its presence would be of minimal risk to recreational users. Our findings suggest that it would be important to further investigate factors that influence *Y. enterocolitica* survival and occurrence in the environment.

ACKNOWLEDGEMENTS

Special thanks to Vanessa Morton and Nicole McLellan at the University of Waterloo for technical assistance, and to Cynthia Hallé for water quality data. The authors would like to acknowledge the Toronto Central Public Health Laboratory (Ontario Agency for Health Protection and Promotion) for providing *Yersinia* isolates used this study. We also acknowledge the Public Health Agency of Canada C-EnterNet program, in particular Drs Katarina Pintar and Frank Pollari. This project was funded by the Canadian Water Network, the Public Health Agency of Canada, the Natural Sciences and Engineering Research Council of Canada (NSERC) and Partners of the NSERC Industrial Research Chair in Water Treatment at the University of Waterloo (www.civil.uwaterloo.ca/watertreatment/). The current Chair partners include: American Water Canada Corp., Associated Engineering Group Ltd, the cities of Brantford, Guelph, Hamilton, Ottawa and Toronto, Conestoga-Rovers & Associates Limited, EPCOR Water Services, GE Water & Process Technologies (Z zenon), Lake Huron and Elgin Area Water Supply Systems, the Ontario Clean Water Agency (OCWA), RAL Engineering Ltd, the Region of Durham, the Regional Municipalities of Niagara and Waterloo, and Stantec Consulting Ltd.

REFERENCES

other than \textit{Y. pseudotuberculosis} and \textit{Y. pestis} isolated from water and sewage. J. Appl. Microbiol. 96(6), 1230–1236.

Hunter, P. R. 1997 \textit{Waterborne Disease: Epidemiology and Ecology.} John Wiley, Chichester, UK.

prospective case-control study. Epidemiol. Infect. 112(1), 133–141.

