First investigations into the prevalence of Cryptosporidium and Giardia spp. in Hungarian drinking water

J. Plutzer, M. H. Takó, K. Márialigeti, A. Törökné and P. Karanis

ABSTRACT

Safe drinking water is a top priority in preventing disease outbreaks and is of general concern to everyone. This study examines the occurrence of Cryptosporidium and Giardia in Hungarian drinking water supplies for the first time. A total of 76 raw and drinking water samples were examined using the U.S. EPA Method 1623. From these 15 of 34 (48.4%) raw water samples tested positive for Giardia and 7 (26.6%) for Cryptosporidium. Twelve of 45 (26.7%) drinking water samples were positive for Giardia and 6 (13.3%) for Cryptosporidium. Overall, Giardia cysts and/or Cryptosporidium oocysts were detected in 48% of the raw water samples and 35% of the drinking water samples. The highest levels in drinking water were found to be 3 oocysts/100 litres of Cryptosporidium and 63.6 cysts/100 litres for Giardia, enough to cause giardiasis. The highest levels in raw water were 1,030 cysts/100 litres for Giardia and 50 oocysts/100 litres for Cryptosporidium and higher oocyst densities were associated with source water receiving effluents from sewage treatment plants or originating from a forest environment. In addition to this monitoring, riverbank filtrated water and raw water from the River Danube in Budapest were monitored in order to ascertain protozoan removal efficiency of riverbank filtration (RBF). A total of 157 samples, including 87 samples from the River Danube and 70 samples post RBF, were examined. Cryptosporidium and Giardia were detected regularly in the river water but never in riverbank filtered water suggesting the effectiveness of RBF as a purification method.

The occurrence of Cryptosporidium oocysts and Giardia cysts in the investigated water supplies may require the water utilities and water authorities in Hungary to apply additional monitoring and treatment and/or watershed controls.

Key words | Cryptosporidium, drinking water, Giardia, Hungary, water sources

INTRODUCTION

The presence of Cryptosporidium spp. oocysts and Giardia spp. cysts in water is an increasing problem throughout the world. Giardia causes an intestinal illness called giardiasis, leading to explosive, foul smelling watery diarrhoea while Cryptosporidium is responsible for a similar diarrhoeal disease called cryptosporidiosis. Several species of Giardia and Cryptosporidium exist including G. lamblia, C. parvum (genotype II) and C. hominis (formerly known as anthroponotic genotype or genotype I) which comprise the most prevalent group of species causing disease in humans (Hunter & Thompson 2005) although C. felis, C. meleagridis, C. canis, and C. muris, C. andersoni, C. suis have also been reported to cause human disease (Jiang & Xiao 2003; Read et al. 2004; Leoni et al. 2006). Drinking water sources can become contaminated through the introduction of infected faeces from wild and/or farm animals or from sewage flushed...
into surface waters (Erlandsen et al. 1990; Karanis et al. 1996a, b; Bednarska et al. 1998; Hunter & Thompson 2005). A number of outbreaks have been reported worldwide owing to a combination of chlorine resistance of the dormant parasite and inadequate water treatment leading to sufficient numbers of protozoa to cause illness (Karanis et al. 2007). However, it is unusual to find these parasites in boreholes or deep well water unless fissures are present, thereby allowing surface water into the source. In Hungary 95% of water supplies originate from groundwater (confined aquifers and karst water) with riverbank filtration (RBF) and surface water treatment plants making up the remaining 5%. In our study, we investigated the public drinking water systems in order to gain information on the distribution of Giardia and Cryptosporidium oocysts and estimate the efficacy of applied water treatment techniques in Hungary.

MATERIALS AND METHODS

Sampling sites and sampling designs

The geographic location of Hungary and sampling sites are shown in Figure 1. From the year 2000 until 2005 suspected contaminated drinking water resources were examined on an irregular basis taking into consideration particular events such as heavy rains or/and dry seasons.

Springs

Three springs and three karsts wells were examined. Karsts are a special type of landscape which is formed by dissolution of soluble rocks, including lime rocks and dolomite. Karsts regions contain aquifers that are capable of providing large supplies of water. These aquifers are very productive, but they are more susceptible to contamination, than those in other geologic media.

In all cases, the water is used without treatment or treatment by chlorination or in the case of one spring, the water is stored in an open pool. There is extensive animal husbandry in the vicinity of the karst wells and 2 springs. The sample code is 1, 17 in Table 1 and Figure 1.

Wells

Two groundwater wells were sampled several times, one of which showed bacteriological problems and was the site of
<table>
<thead>
<tr>
<th>Sample code</th>
<th>r = raw water, d = drinking water</th>
<th>Date of sampling</th>
<th>Giardia cysts/100 litres</th>
<th>Cryptosporidium oocysts/100 litres</th>
<th>Water source/Water treatment characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>d</td>
<td>09/10/2000</td>
<td>2</td>
<td>0</td>
<td>Karst spring/chlorination</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>13/11/2000</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>r</td>
<td>22/03/2001</td>
<td>0.3</td>
<td>0</td>
<td>Surface water, 157,000 km² watershed/flocculation, filtration, ozonation, activated carbon, chlorination</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>22/03/2001</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>10/09/2001</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>10/09/2001</td>
<td>1.2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>25/03/2002</td>
<td>60</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>25/03/2002</td>
<td>0</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>12/08/2002</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>12/08/2000</td>
<td>0.2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>r</td>
<td>04/11/2002</td>
<td>5</td>
<td>0</td>
<td>Surface water, 5,800 km² watershed/flocculation, filtration, activated carbon and chlorination or chlorine dioxide</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>04/11/2002</td>
<td>0</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>r</td>
<td>04/11/2002</td>
<td>0</td>
<td>0</td>
<td>Surface water, 5,800 km² watershed/flocculation, filtration, activated carbon and chlorination or chlorine dioxide</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>04/11/2002</td>
<td>0</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>r</td>
<td>10/06/2002</td>
<td>135</td>
<td>5</td>
<td>Surface water, 372,000 km² watershed/flocculation, filtration, activated carbon and chlorination</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>10/06/2002</td>
<td>0.4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>13/09/2005</td>
<td>300</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>13/09/2005</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>r</td>
<td>21/06/2005</td>
<td>90</td>
<td>20</td>
<td>Surface water, 218 km² watershed/flocculation, filtration, chlorination</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>21/06/2005</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>r</td>
<td>28/06/2005</td>
<td>0</td>
<td>3</td>
<td>Surface water, water treatment is 112 m from high up of brook/flocculation, filtration, activated carbon and chlorination</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>16/08/2005</td>
<td>40</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>16/08/2005</td>
<td>12.8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>d</td>
<td>28/06/2005</td>
<td>4</td>
<td>0</td>
<td>Spring/chlorination</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>16/08/2005</td>
<td>3.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>r</td>
<td>06/09/2005</td>
<td>20</td>
<td>0</td>
<td>Surface water, 1,730 km² watershed/flocculation, filtration, activated carbon and chlorination</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>06/09/2005</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>r</td>
<td>05/07/2005</td>
<td>1030</td>
<td>30</td>
<td>Surface water, 1,730 km² watershed/flocculation, filtration, chlorination</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>05/07/2005</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>06/09/2005</td>
<td>60</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>06/09/2005</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>r</td>
<td>12/07/2005</td>
<td>0</td>
<td>0</td>
<td>Surface water, 5.4 km² watershed/flocculation, filtration, activated carbon and chlorine dioxide</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>12/07/2005</td>
<td>0.7</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>r</td>
<td>26/07/2005</td>
<td>10</td>
<td>0</td>
<td>Surface water, 8.38 km² watershed/flocculation, filtration, chlorination</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>26/07/2005</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>23/08/2005</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>23/08/2005</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>r</td>
<td>09/08/2005</td>
<td>840</td>
<td>0</td>
<td>Surface water, 4 km² watershed, this brook collects the water of springs, the water treatment is –1 km from high up of brook/Sedimentation, chlorination</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>09/08/2005</td>
<td>27.1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>14/09/2005</td>
<td>850</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>14/9/2005</td>
<td>63.6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>r</td>
<td>10/09/2001</td>
<td>8</td>
<td>0</td>
<td>Canal from River Tisza/flocculation, filtration, ozonation, activated carbon, chlorination</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>10/09/2001</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>r</td>
<td>13/09/2005</td>
<td>0</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>13/09/2005</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
a second giardiasis outbreak in Hungary. During this sampling period, numerous giardiasis cases were identified among local people, mainly among children. This outbreak has been highlighted in the public media but was never reported in a scientific journal. Since we could not detect any protozoa in these samples, these are not included in Table 1.

Tap and raw water from treatment plants

Hungary has a total of 16 treatment plants abstracting surface water from lakes and rivers for drinking water consumption. Source water near all 16 plants and finished water were tested a minimum of two times during the investigative period of 2000–2005, in different seasons or after rainfalls, when the water level of reservoirs and rivers were raised. Four surface water treatment plants are located around Lake Balaton, one is located on the River Danube, one on the River Tisza, one on the Eastern Main Canal, two on the River Bódva and one at Brook Nagy. There are six water reservoirs in Hungary. In general the main steps of the surface water treatment are flocculation by alum and iron salts and/or synthetic organic polymers (alone, or in combination), settling or sedimentation, before sand (or gravel) filtration and chlorination (with chlorin or chlorine dioxide). The maximum level of combined chlorine, chlorite and chlorine (Cl₂) never exceeded 3 mg/L, 0.2 mg/L and 0.5 mg/L in the final water. Chlorine dioxide can be added to a maximum of 0.4 mg/L final concentration.

Lake Balaton. The ecological state of Lake Balaton was at its lowest in 1995, but due to environmental investments, sewage treatment, waste management reforms it is now in a good state. Its catchment area is 5,800 km² with the River Zala providing the largest source of water and the canalized Sio being the only outflow. The possibility of *Giardia* and *Cryptosporidium* contamination comes from small inflows, ducts, treated sewage, and from birds. The drinking water treatment contains additional activated carbon filtration. Sample code is 8, 9 in Table 1 and Figure 1.

River Danube. This is the second largest river in Europe and the only major European River to flow from west to east. It receives water from the Black Forest Mountains of Germany and empties after 2,850 km into the Black Sea on the Romanian coast. Along its way the Danube flows through 9 countries and drains an area slightly larger, than 817,000 km². It has 300 tributaries, the principal one being the River Tisza in Hungary. A small water treatment plant services the River Danube to produce water for only 8000 people. Authorized sewage outflows are located at the 1,576, 1,577, 1,577.2, 1,580.2 and 1,584 km points and water treatment is located at the 1,576 km point from the issue. The drinking water treatment contains additional activated carbon filtration. Sample code is 10 in Table 1 and Figure 1.

River Tisza. This river is the second largest river in Hungary and the longest Danube tributary. It is approximately 966 km long with approximately 160 km laying in the Ukraine and Romania and about 800 km in the Great Hungarian Plain. It has a catchment area of 157,000 km² with 29.4% being in Hungary. Like the River Danube, it receives many authorized and sometimes illegal sewage outflows, although none are located near the water treatment plant. The drinking water treatment contains additional activated carbon filtration, ozonization. Sample code is 2 in Table 1 and Figure 1.

Eastern Main Canal. The main function of this canal is agricultural, and it supplies water to fish ponds, year round irrigation-water to the plain and receives the inland water. It does not receive sewage, although the possibility of *Giardia* and *Cryptosporidium* contamination exists from animal husbandry. The drinking water treatment contains additional activated carbon filtration, ozonization. Sample code is 25 in Table 1 and Figure 1.

River Bódva. Its catchment area is 1,730 km². The tributaries are polluted with sewage effluents and at 10.7 km from the issue there is an authorized sewage outflow. Water treatments are located at the 0.1 and 5.7 km points. If the raw water turbidity is high, the water treatment contains additional activated carbon filtration. If the raw water turbidity is low the water is pumped through sandpools into the groundwater prior to chlorination and delivery into the distribution system. Sample code is 18, 19 in Table 1 and Figure 1.
Brook Nagy. This brook flows through forests, where contamination may occur from wild animals. There is also a small water treatment plant at the 0.1 km point of the brook that produces water for only 1000 people. The drinking water treatment contains additional activated carbon filtration. The sample code is 16 in Table 1 and Figure 1.

Water Reservoirs. Reservoir Hasznos is established on the Kövicses Brook, Komravölgy on the Brook Ipoly (catchment area is 5.4 km²), Köszörüvölgy on the Brook Köszörü, Csőrrét on the Brook Nagy (catchment area is 8.38 km²), Lázbérc on the Brook Bán and Csermely (catchment area is 218 km²) and Mátrafüred on the Brook Csatorna (catchment area is 4 km², this brook receives water from 9 springs, which are 50–500 m from the brook). Only the Brooks Bán, Kövicses, Ipoly, and Nagy receive authorized sewage. In the case of Brook Bán, water treatment is at km 10.3, and sewage outflow is at km 26.3. This reservoir is surrounded by forests where the possibility of contamination exists by wild animals. Hasznos and Komravölgy have additional activated carbon filtration. Mátrafüred does not include flocculation or a filtration step in water treatment. Sample codes are indicated as 13, 20, 22, 24 in Table 1 and Figure 1.

Riverbank filtered water

The water supply of the city of Budapest and its suburbs originates from river bank filtration, and approximately 2 million people consume RBF water. In total 700 riverbank filtration wells are located 30–100 m from the River Danube, mainly on the Island Szentendrei and on the Island Csepel. On the Island Szentendrei, water flows thorough sand and gravel layers and is directed to the drinking water system after chlorination. On the Island Csrepel water is filtered through muddy layers and after treatment (ozonization, sand and activated carbon filtration, removal of iron and manganese, and chlorination) is directed to the water distribution system. During 2004–2005, the River Danube in Budapest was investigated once per week at the 1,656 km point along with its riverbank filtered water (Figures 2 & 3). For sampling post riverbank filtration water, we selected four sampling points for the drinking water at the distribution system.

Sample collection

For primary concentration of 50–1,000 litres of drinking water, Filta-Max (IDEXX, Genera) foam filters were used (USEPA 2001). Water and pressure meters were connected to the sampling tap. During the filtration, the pressure was adjusted to 1–2 Bar, and the flow rate to 1–2 litres/minute. Raw water samples with high turbidity were collected into 4-20-L cans from sampling taps inside of the water treatment plants and the samples were transferred immediately to the laboratory in order to perform chemical flocculation for recovery of Cryptosporidium oocysts and Giardia cysts (Vesey et al. 1993). During flocculation, the formation of a calcium carbonate precipitate adsorbs and pulls water particulates and protozoa to the bottom of the vessel, giving a dense, stable form within 4 hours. After discarding the supernatant, the precipitate was dissolved in 10% sulphamic acid, giving a concentrate containing the oocysts.

In the case of riverbank filtration monitoring, all samples were concentrated using membrane filtration according to U. S. EPA 1623 method (USEPA 2001). We used 5–10 litres when samples originated from the River Danube and 400 litres of drinking water for post riverbank filtration samples. The pressure filtration equipment was connected to the tap of system pipes and filtration was achieved through 142 mm diameter, 3 μm pore size cellulose nitrate membrane filters (Millipore). For raw water sampling with higher turbidity multiple membrane filters were used for each sample before final filtered sediments were combined.

Cryptosporidium and Giardia concentration/separation

The purification of the parasites was carried out according to the standard method U. S. EPA 1623. Briefly, after Filta-Max filtration, the filter was decompressed and washed with phosphate buffered saline and sediment from the surface of membrane filters was washed with Envirocheck buffer solution (USEPA 2001). Oocysts were further concentrated by centrifugation, and separated from debris by Immuno magnetic separation (IMS) (Dynabeads GC-Combo kit, Dynal Biotech), according to the manufacturer's description. This method replaces flotation techniques.
used for separating oocysts from other debris. Briefly, anti-
Cryptosporidium and anti-Giardia Dynabeads were
incubated with the water sample concentrate along with
the supplied buffer. The antibodies coated on the bead
selectively bind oocysts. The bead-oocyst complexes are
separated using a Dynal magnetic particle concentrator and
subsequently the oocysts are dissociated from the beads.
The resultant suspension for screening was clean and it had
the small volume of 50 μl.

Microscopic examination

After IMS, separated oocysts were mounted onto slides,
fixed with methanol and stained with fluorescently labelled
monoclonal antibodies (FITC) (Waterborne, Inc, New
Orleans, LA) and a nucleic acid stain [DAPI, 2-(4-amidi-
nophenyl)-6-indolecarbamidine dihydrochloride, Fluka] as
described (USEPA 2001). Slides were examined using
epifluorescent microscopy (LEICA DM IRB) and FITC
positive structures were checked for the appropriate size
and shape. Such presumptive organisms were further
examined to detect the DAPI stained nuclei, and with
DIC (Differential Interference Contrast) microscopy for the
confirmation of characteristic surface and internal struc-
tures (USEPA 2001). DIC examination was carried out with
the same microscope using Nomarski polarisation optics.
All samples found positive by IFT were examined with
DAPI and by DIC under 1,000 × magnification in order to
confirm the presence of internal structures of oocysts.
Identification was confirmed when those same oocysts
exhibited the oocyst wall, and two or more internal
morphological features, characteristic of Giardia cysts and
Cryptosporidium oocysts. Giardia cysts were confirmed by
observing the cyst wall, internal cytoplasm, peritrophic
space and nuclei. Cryptosporidium oocysts were confirmed
by the oocyst wall and the observed sporozoites, nuclei or
densely packed cytoplasm. The structure of the oocyst
surface was visible many times. Only samples in which

Figure 2 | Giardia oocysts count in River Danube at 1,656 km during the years 2004–2005.
oocysts fulfilling defined and published morphological criteria, according to the USEPA protocol, were enumerated and samples deemed positive.

RESULTS

236 water samples within Hungary (31 raw water, 45 drinking water, 87 river water, and 70 post RBF samples) were collected and investigated for the presence of Cryptosporidium oocysts and Giardia cysts.

Spring water

In one spring, 2 Giardia cysts/100 L were found (sample code 1, Table 1 & Figure 1) while in another, 4 Cryptosporidium oocysts and 3.5 Giardia cysts/100 L were detected once. The drinking water in the last case was stored for a long time in an opened pool. The sample code is depicted as 17 in Table 1 and Figure 1.

Ground water

No protozoa were detected in any sampled groundwater and therefore are not included in Table 1, and the sample code is 14 in Figure 1.

Raw water

The raw water of 10 treatment plants was contaminated with both protozoa, ranging from 5 to 50 Cryptosporidium oocysts per 100 L and 0.3–1,030 Giardia cysts/100 L (samples 2, 8–10, 13, 16, 18–20, 22, 24–25, Table 1 & Figure 1).

Final (drinking) water

The final water of 8 water treatment plants was contaminated with Cryptosporidium and Giardia varying between 0.1–3 Cryptosporidium oocysts and 0.2–63.6 Giardia cysts/100 L (samples 2, 8–10, 13, 16, 18–20, 22, 24–25, Table 1 and Figure 1).

Only the data with positive results is shown in Table 1.
Danube surface river water and River bank filtrate

No Cryptosporidium oocysts (0/100 L) were detected in approximately 60% of surface river water samples. In those samples found to be contaminated oocysts values varied between 0–50/100 L. Giardia was detected more frequently with cyst numbers ranging within 0–500/100 L in ~90% of river water samples, with 1% of the samples containing more than 1,000 cysts/100 L. The highest Giardia levels were in January to April in both 2004 and 2005 with a second peak in November 2005. During these time a record high of 1,020 Giardia cysts/100 L was found with mean numbers ranging between 260–550 cysts/100 L. The lowest Giardia levels were found to be in July and August each year with mean numbers ranging between 16–67 cysts/100 L. Similar to Giardia, Cryptosporidium peaked in March and April 2004, with the highest recorded number being 100 oocysts/100 L; the mean varied between 32–70 oocysts/100 L. The minimum and maximum counts for the detection of Cryptosporidium and Giardia in River Danube samples are shown in Figures 2 and 3 and are presented for each month in the investigated period of 2004 and 2005. Interestingly, no Cryptosporidium oocysts or Giardia cysts could be detected in the distribution system of drinking water from riverbank-filtered sources.

DISCUSSION

In Eastern European countries, investigations into contamination of water supplies with Giardia and Cryptosporidium are very rare. In 1987–1988, small Hungarian waterworks (water originating from springs and streams) were examined for the occurrence of Giardia cysts by membrane filtering 70–380 litres of drinking water before examination of the pellet by direct microscopy. Giardia was detected regularly in one of the springs with the authors emphasizing that the hazard from Giardia contaminations in Hungary exists, especially where spring water originates from a forest environment (Andrik & Komuves 1989). Raw water sources in the Czech Republic were found to contain 0 to 7,400 Cryptosporidium oocysts per 100 litres and 0 to 485 Giardia cysts per 100 litres (Dolejs et al. 2000) and recently, high levels of contamination have been reported for both protozoa in water supplies in Russia and Bulgaria (Karanis et al. 2006).

In our investigation, samples were taken from water treatment plants posing a high risk of protozoan contamination; 6 surface water treatment plants were in contact with effluents from sewage treatment plants located between 1 to 40 km away, 3 surface water treatment plants took water from a forested area containing abundant wild animals, and 2 surface water treatment plants’ source water was near agricultural activities (livestock rearing). In all cases the raw water was contaminated, however, except for two water treatment plants parasite removal seemed effective during the investigative period.

Raw water from the River Danube was found to be highly contaminated with both Giardia cysts and Cryptosporidium oocysts. Changes in water level and the introduction of differently treated sewage led to high variability in the numbers of these protozoa with counts varying over two or three orders of magnitude with peaks found in winter/spring months.

One interesting finding pertained to the lack of protozoa after RBF demonstrating the high potential of an RBF system for the reduction or elimination of protozoan. Another group (Weiss et al. 2005) previously suggested the potential of RBF for a substantial reduction in microorganisms such as Giardia, Cryptosporidium, viruses, and potential surrogate parameters. A Hungarian study investigated serological responses to the 15/17-kDa and 27-kDa cryptosporidial antigens in women using groundwater and or surface water for drinking (Frost et al. 2005). Serological responses were significantly lower in women who drank water from a confined aquifer or surface water following RBF compared to those, drinking water from Karst wells or non-RBF treated surface water. Strikingly, among women using bank-filtered water, the intensity of response was less than one-third of that observed for women using conventionally filtered and disinfected surface water.

The current protozoan detection methods likely underestimate the number of organisms and, therefore, when protozoa are detected they should be treated seriously. Infectivity of these oocysts/cysts depends on several factors including the species present and whether they are capable of producing human infection, clumping of the oocysts/cysts, water temperature, and age (Li et al. 2004). We have
taken into consideration useful information such as internal structure and DAPI staining for the accurate identification of *Cryptosporidium* and *Giardia* oocysts using microscopy (Ho et al. 1995; Thiriat et al. 1998; USEPA 2001; Smith et al. 2002). While PCR identification of oocysts may be more sensitive than microscopic examination, morphological characteristics cannot be distinguished (Jiang et al. 2005).

Genotyping isolates found in either source or treated water can give further information on the likely sources of contamination and whether strains may be infectious to humans (Ryan et al. 2005). Classification of *Giardia* and *Cryptosporidium* taxonomy with the aid of molecular typing techniques is still being developed but is promising to distinguish isolates in the environment able to infect humans as well as their transmission patterns (Appelbee et al. 2005; Alves et al. 2006; Xiao et al. 2006). Different genotypes have been linked to different symptomatology in sporadic human giardiasis and cryptosporidiosis but more information is required with regards to the association between different risk factors and different genotypes, particularly for human adapted *Giardia* and *Cryptosporidium* genotypes and for zoonotic genotypes. Genetic analysis using isolates from cattle samples confirmed the presence of *C. parvum* on animal farms in Hungary (Plutzer & Karanis 2007) suggesting that cattle may act as infection reservoirs for water supplies in the country.

Our results confirm the need to examine water treatment technologies concerning *Giardia* and *Cryptosporidium* inactivation/removal efficacy in Hungary. Currently drinking water plants are not prepared for unexpected events or worst-case scenarios. Additional treatments are necessary, particularly, at the 14 surface water treatment plants where the water treatment is not effective against the protozoa (Table 1) as well as the introduction of watershed control. Whereas the combination of filtration and chlorine disinfection is considered fundamental for treatment of surface water originated drinking water, unusual raw water conditions or inattentive operation often led to an infection of the purified water and distribution system (see e.g. number 16, Table 1 & Figure 1). Moreover, it has been demonstrated that disinfectant levels adequate for *Giardia* treatment are only marginally effective against *Cryptosporidium*. At typical levels of drinking water chlorination over prolonged periods *Giardia* is killed whereas *Cryptosporidium* can only be rendered harmless via long exposure to concentrated ultra violet light or special chemical treatment (Medema et al. 2006). Ozonation is an effective measure in killing both these pathogens; however the most successful method of removing oocysts/cysts from a water supply is through filtration (membrane filtration, diatomaceous earth filtration) (Medema et al. 2006).

Indeed, our study demonstrated the ineffectiveness of disinfection against protozoa at 14 surface water treatment plants while also hinting at the efficacy of riverbed filtration.

Giardia can cause disease at a level as low as 3–5 cysts/100 litres in treated drinking water (Wallis et al. 1996) while *Cryptosporidium* requires as few as 10–30 oocysts/100 L to pose a risk of outbreak (Haas & Rose 1995). The highest protozoan levels found in Hungarian drinking waters was 63.6 *Giardia* cysts/100 litres and *Cryptosporidium* 3 oocysts/100 litres. During the investigation period, two water treatment plants in Hungary were found to harbour levels of protozoans above this threshold for disease outbreak suggesting the need for re-evaluation of the purification systems.

In the United Kingdom, direct monitoring of drinking water is embodied in drinking water regulation. Water supply systems with a risk of *Cryptosporidium* infection are obligated to sample their treated water at least daily, in order to demonstrate average concentrations of *Cryptosporidium* below 10 oocyst/100 L of treated water (Medema et al. 2006). U.S. EPA Surface Water Treatment Rule require water systems using surface water or ground water in direct contact with surface water to disinfect and/or filter their water in order to render at least 99.9% of *Giardia* cysts harmless or physically removed (USEPA 1989). This level of removal/inactivation is believed to reduce the risk of waterborne giardiasis to less than one person of 10,000 people per year. In addition, it has been determined that raw water should not contain more than seven cysts/100 litres (USEPA 1989). Raw water from nine surface water treatment plants in Hungary was found to contain *Giardia* counts above this level during our study (Table 1). One component of the Interim Enhanced Surface Water Treatment Rule regulates *Cryptosporidium* in drinking water by requiring filtered surface water systems serving at least 10,000 people to physically remove at least 99% of *Cryptosporidium*; for systems without filtration a watershed control program must be adapted in order to protect the source water from *Cryptosporidium*.
contamination (USEPA 1998). In our investigations, sampling site number 24 has no filtration, only sedimentation; therefore, a watershed control would be necessary.

In Hungary the statutory orders 201/200 (X.25.) and 47/2005 (III.11.) regulate the handling and testing of drinking water and state that Cryptosporidium must be determined for water intended for human consumption if Clostridium perfringens is detected. Clostridium detection is required at water systems that use surface water or ground water in direct contact with surface water. The bacteriological quality and parameters have been examined in parallel for samples in our study by either the waterworks or the Department of Bacteriology at our Institute according to the Hungarian standard MSZ EN 26461-2:1994. Clostridium could not be detected in any drinking water samples.

It is known that the major reservoir for C. parvum is domestic livestock, predominantly cattle, and direct contact with infected cattle is a major transmission pathway of human infection along with indirect transmission through drinking water (Hunter & Thompson 2005). It should be emphasised here, that in Hungary in 2003, the cow and calf (dairy cow, beef cow and heifers in calves) stock totalled 714,000, and the lamb (ewes and shears lings, lambs) stock was estimated to be 1.5 million (Anonymous 2004). In England, the cow and calf and lamb stocks are eight times higher per square kilometre, than in Hungary (Defra Statistics 2004). Based on Hungarian investigations focused on enteric diseases, Cryptosporidium is the third most frequent pathogen of calves (detected in 70% of the herds) while 22.6% of lambs and 37.5% of goat kids with diarrhoea were found to carry Cryptosporidium (Nagy 1995). In stool samples of patients with gastro-enteritis in Hungary 562 tested positive for Giardia and only six for Cryptosporidium in 2003 (Anonymous 2003). Accordingly, Giardia infections are more frequent than Cryptosporidium but a more detailed study needs to be undertaken. Currently there is no data monitoring the presence of these protozoa in wild animals in Hungary. According to data from the Czech Republic deer can be a potential reservoir of C. parvum (Hajdusek et al. 2004). A Polish study emphasized that small rodents should be considered as an important reservoir for different Cryptosporidium genotypes (Bajer et al. 2005). Review of world-wide reports showed C. parvum to be found in 11 wild mammals, mainly rodents, but also insectivores (e. g. common shrew), lagomorphs (e. g. brown hare) and ungulates (e. g. deer) while C. muris has been reported specifically in wild rodents (Sturdee et al. 1999). G. lamblia genotypes A and B are widespread, found in dogs, cats, farm and wild animals (mainly rodents); zoonotic origin for waterborne outbreaks of Giardia infection appears to be uncommon or unclear. Therefore, the impact of the wildlife cycle cannot be underestimated (Appelbee et al. 2005) nor can the risk appear posed by cats, dogs, and other animals (Karanis et al. 1996a, b; Karanis & Ey 1998; v. Keulen et al. 2002; Thompson 2004). Future genotyping of parasites will be helpful in the identification of contamination sources (Caccio et al. 2005). Water pollution is one of the most urgent health problems currently facing several European countries and emerging pathogens leading to waterborne disease is a pan-European problem. Safe drinking water is a general concern to all European countries yet it has been recognised that sophisticated surveillance against many diseases and especially those associated with water are not available. There is a need for wider dissemination of information on waterborne and emerging diseases amongst member states of the EU and Hungary.

ACKNOWLEDGEMENTS

This work was funded by ETT (Council of Health Science–T08-076) and GVOP AKF 3.1.1 (0517) programs and by the Waterworks of Budapest Co.

REFERENCES

Thiriat, L., Sidaner, F. & Swartzbrod, J. 1998 Determination of Giardia cyst viability in environmental and faecal samples by

